论文标题
从强烈非线性部分相干波产生的可整合湍流
Integrable turbulence developing from strongly nonlinear partially coherent waves
论文作者
论文摘要
我们以数值从强烈非线性部分相干波产生的可积分湍流在焦点的一维非线性Schrodinger方程的框架中。我们发现,在运动开始后不久,湍流进入了一个状态,其特征是统计量非常缓慢(准平稳状态-QSS),我们集中于根据初始频谱的形状和宽度的基本统计函数的详细检查。特别是,我们表明波场强度的概率密度函数(PDF)几乎与初始频谱无关,并且通过某个代表两个指数分布的乘积的积分的某个Bessel函数非常近似。 PDF对应于等于4的二阶强度的值,表明流氓波的产生增强。我们研究过的所有大幅度的波浪在空间和时间上都非常近似,无论是在空间还是在时间上 - 通过第一次(二重呼吸器)或第二个订单的理性呼吸溶液。
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbulence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.