论文标题
二阶椭圆操作员的关键扰动。第一部分:平方函数的层势范围
Critical Perturbations for Second Order Elliptic Operators. Part I: Square function bounds for layer potentials
论文作者
论文摘要
这是一系列两篇论文的第一部分,在其中我们研究了差异的扰动二阶椭圆算子$ - \ mathop {\ propatatorName {div}} a \ nabla $ y \ nabla $ y \ nabla $ y habla $ y habla $ y habla $ y habla $,其系数位于关键空间中,通过层面电位的方法。特别是,我们表明,对于复杂的Hermitian,Block形式或恒定的差异或恒定的差异,在上半空间中的椭圆形操作员在这种扰动下都稳定。例如,这使我们能够在设置无限域的设置中要求第一个结果,即磁性schrödingeroperator $ - (\ nabla-i {\ bf a})^2+v $当电磁电位$ {\ nabla-i {\ bf a})^2+v $在电势$ v $中列出了一个规模的spare Invar。在本文中,我们通过矢量值$ tb $定理和抽象层电位建立了平方函数的$ l^2 $控制,并使用这些平方函数界限来获得解决方案的统一切片范围。在即将到来的论文中考虑了解决方案的存在和唯一性以及非区域最大运算符的界限。
This is the first part of a series of two papers where we study perturbations of divergence form second order elliptic operators $-\mathop{\operatorname{div}} A \nabla$ by first and zero order terms, whose coefficients lie in critical spaces, via the method of layer potentials. In particular, we show that the $L^2$ well-posedness of the Dirichlet, Neumann and Regularity problems for complex Hermitian, block form, or constant-coefficient divergence form elliptic operators in the upper half-space are all stable under such perturbations. For instance, this allows us to claim the first results in the setting of an unbounded domain concerning the solvability of boundary value problems for the magnetic Schrödinger operator $-(\nabla-i{\bf a})^2+V$ when the magnetic potential ${\bf a}$ and the electric potential $V$ are accordingly small in the norm of a scale-invariant Lebesgue space. In the present paper, we establish $L^2$ control of the square function via a vector-valued $Tb$ theorem and abstract layer potentials, and use these square function bounds to obtain uniform slice bounds for solutions. The existence and uniqueness of solutions, as well as bounds for the non-tangential maximal operator, are considered in the upcoming paper.