论文标题
属,厚度和交叉数的图编码有限基团的生成特性
Genus, thickness and crossing number of graphs encoding the generating properties of finite groups
论文作者
论文摘要
假设$ g $是一个有限的集团,让$ a $和$ b $是非阴性整数。我们定义一个无向图$γ_{a,b}(g)$,其顶点对应于$ g^a \ cup g^b $的元素,其中两个元组$(x_1,\ dots,x_a)$ and $(y__1,y_1,\ dots,dots,y__b)$相邻,只有$ \ langle \ langle。 x_1,\ dots,x_a,y_1,\ dots,y_b \ rangle =g。$我们的目的是估计图属,厚度和交叉数$γ_{a,b}(g)$时,$ a $ a $ a $和$ b $是正整数。
Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers. We define an undirected graph $Γ_{a,b}(G)$ whose vertices correspond to the elements of $G^a\cup G^b$ and in which two tuples $(x_1,\dots,x_a)$ and $(y_1,\dots,y_b)$ are adjacent if and only $\langle x_1,\dots,x_a,y_1,\dots,y_b \rangle =G.$ Our aim is to estimate the genus, the thickness and the crossing number of the graph $Γ_{a,b}(G)$ when $a$ and $b$ are positive integers.