论文标题
量子记忆存在下的零不确定性状态
Zero Uncertainty States in the Presence of Quantum Memory
论文作者
论文摘要
不确定性原理在预测不兼容的可观察结果的测量结果上施加了基本限制,即使已知系统状态的完整经典信息。如果可以构建与系统纠结的量子内存,情况会有所不同。零不确定性状态(与最低不确定性状态相比)是特殊的量子状态,一旦通过在记忆上进行适当的测量,可以消除不兼容的von Neumann可观察到不兼容的不确定性。在这里,我们确定任何给定的非排效器可观察物的所有零不确定性状态,并确定所需的最小纠缠。事实证明,在通用情况下,所有零不确定性状态都是最大的,反之亦然,即使这些可观察到的物品仅弱不相容。我们的工作建立了零不确定性和最大纠缠之间的简单而精确的联系,这对基础研究和实际应用来说是有意义的,包括量子认证和验证。
The uncertainty principle imposes a fundamental limit on predicting the measurement outcomes of incompatible observables even if complete classical information of the system state is known. The situation is different if one can build a quantum memory entangled with the system. Zero uncertainty states (in contrast with minimum uncertainty states) are peculiar quantum states that can eliminate uncertainties of incompatible von Neumann observables once assisted by suitable measurements on the memory. Here we determine all zero uncertainty states of any given set of nondegenerate observables and determine the minimum entanglement required. It turns out all zero uncertainty states are maximally entangled in a generic case, and vice versa, even if these observables are only weakly incompatible. Our work establishes a simple and precise connection between zero uncertainty and maximum entanglement, which is of interest to foundational studies and practical applications, including quantum certification and verification.