论文标题

Sobolev举起不变的人

Sobolev Lifting over Invariants

论文作者

Parusiński, Adam, Rainer, Armin

论文摘要

我们证明,有限组的复杂表示$ v $ $ g $。令$σ=(σ_1,\ dots,σ_n)$为同质基本不变的最小系统,让$ d $成为其最大程度。我们证明,任何连续的映射$ \ overline {f} \ colon {\ mathbb r}^m \ to v $ to v $,使得$ f =σ\ circ \ circ \ circ \ circy {f} $属于$ c^{d-1,1} $ sobolev class $ w^{1,p} $的$ c^{d-1,1} $。在情况下,$ m = 1 $总是存在连续的选择$ \ edline {f} $,对于给定的$ f \ colon {\ mathbb r} \ toσ(v)\ subseteq {\ subseteq {\ mathbb c}^n $。我们给出$ w^{1,p} $ - $ \ overline {f} $的统一界限,以$ c^{d-1,1} $ - $ f $的规范。结果是最佳的:总的来说,提升$ \叠加{f} $不能具有更高的sobolev规则性,如果$ f $在较大的Hölder类中,它甚至可能没有界限。

We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $σ=(σ_1,\dots,σ_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon {\mathbb R}^m \to V$ such that $f = σ\circ \overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 \le p<d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon {\mathbb R} \to σ(V) \subseteq {\mathbb C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源