论文标题
用MacAulay计算A1-Euler编号2
Computing A1-Euler numbers with Macaulay2
论文作者
论文摘要
我们在GW(k)中使用MacAulay2进行几种富集计数。首先,我们使用MACAULAY2在GW(fp)中使用fp(fp)的p质量数和gw(q)中的有理数q计算一般立方体表面的线计数。这给出了一个新的证明,即在GW(k)中,h表示双曲线形式的gw(k)中的线计数为3+12h。然后,我们计算P3中的线计数,符合4个通用线,二次表面的线计数与一条通用线相遇,而dens d-Surfaces铅笔中的单数元素计数。最后,我们提供代码来计算EKL形式并计算几个A1-MILNOR数字。
We use Macaulay2 for several enriched counts in GW(k). First, we compute the count of lines on a general cubic surface using Macaulay2 over Fp in GW(Fp) for p a prime number and over the rational numbers Q in GW(Q). This gives a new proof for the fact that the count of lines on a cubic surface is 3+12h in GW(k) where h denotes the hyperbolic form. Then, we compute the count of lines in P3 meeting 4 general lines, the count of lines on a quadratic surface meeting one general line and the count of singular elements in a pencil of degree d-surfaces. Finally, we provide code to compute the EKL-form and compute several A1-Milnor numbers.