论文标题
利特伍德(Littlewood)与多维结构的设置问题
Littlewood's problem for sets with multidimensional structure
论文作者
论文摘要
我们对有限集的指数和由整数或格子点组成的$ l^1 $ norm估计。假设$ a $具有足够的多维结构,我们的估计值比麦吉希·佩尼奥·史密斯(McGehee-Pigno-Smith)和科尼亚金(Konyagin)的估计更强。这些定理会随着彼得里迪的过去工作而改善。
We give $L^1$-norm estimates for exponential sums of a finite sets $A$ consisting of integers or lattice points. Under the assumption that $A$ possesses sufficient multidimensional structure, our estimates are stronger than those of McGehee-Pigno-Smith and Konyagin. These theorems improve upon past work of Petridis.