论文标题

利特伍德(Littlewood)与多维结构的设置问题

Littlewood's problem for sets with multidimensional structure

论文作者

Hanson, Brandon

论文摘要

我们对有限集的指数和由整数或格子点组成的$ l^1 $ norm估计。假设$ a $具有足够的多维结构,我们的估计值比麦吉希·佩尼奥·史密斯(McGehee-Pigno-Smith)和科尼亚金(Konyagin)的估计更强。这些定理会随着彼得里迪的过去工作而改善。

We give $L^1$-norm estimates for exponential sums of a finite sets $A$ consisting of integers or lattice points. Under the assumption that $A$ possesses sufficient multidimensional structure, our estimates are stronger than those of McGehee-Pigno-Smith and Konyagin. These theorems improve upon past work of Petridis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源