论文标题

三个及更高维

Scattering for the mass-critical nonlinear Klein-Gordon equations in three and higher dimensions

论文作者

Cheng, Xing, Guo, Zihua, Masaki, Satoshi

论文摘要

在本文中,我们考虑了三个和更高维度的实价质量批判性非线性klein-gordon方程。我们证明,在聚焦案例中,散射和爆炸之间的二分法与散落情况下的能量散射。我们将浓度 - 乳胶/刚度法作为R. Killip,B。Stovall和M. Visan [Trans。阿米尔。数学。 Soc。 364(2012)]。主要的新颖性是当非线性不是代数时,通过质量批判性非线性Schrödinger方程的解决方案近似大规模(低频)曲线。

In this paper we consider the real-valued mass-critical nonlinear Klein-Gordon equations in three and higher dimensions. We prove the dichotomy between scattering and blow-up below the ground state energy in the focusing case, and the energy scattering in the defocusing case. We use the concentration-compactness/rigidity method as R. Killip, B. Stovall, and M. Visan [Trans. Amer. Math. Soc. 364 (2012)]. The main new novelty is to approximate the large scale (low-frequency) profile by the solution of the mass-critical nonlinear Schrödinger equation when the nonlinearity is not algebraic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源