论文标题
Hilbert-Poincaré系列一系列平等二项式边缘理想和完整图的永久理想
Hilbert-Poincaré series of parity binomial edge ideals and permanental ideals of complete graph
论文作者
论文摘要
我们给出了一个明确的公式,为整个图形$ k_ {n} $的奇偶校验二线边缘的Hilbert-Poincaré系列提供了一个明确的公式,或者是由所有$ 2 \ times 2 $ 2 $ - $ 2 \ tims $ 2 \ times times n $ n $ -matrix产生的理想的理想。因此,这些理想的深度和Castelnuovo-Mumford规律性独立于$ n $。
We give an explicit formula for the Hilbert-Poincaré series of the parity binomial edge ideal of a complete graph $K_{n}$ or equivalently for the ideal generated by all $2\times 2$-permanents of a $2\times n$-matrix. It follows that the depth and Castelnuovo-Mumford regularity of these ideals are independent of $n$.