论文标题
带有一阶术语的准抛物线方程和移动域中的$ l^1 $ -DATA
Quasilinear parabolic equations with first order terms and $L^1$-data in moving domains
论文作者
论文摘要
研究了一类弱解决方案的弱解决方案,这些解决方案根据一阶项和移动域中的一阶术语和可集成数据而具有非线性。该课程包括$ p $ laplace方程作为特殊情况。通过在移动域中获得适当的梯度估计以及适当的Aubin-Lions引理,显示出弱解是全局的。
The global existence of weak solutions to a class of quasilinear parabolic equations with nonlinearities depending on first order terms and integrable data in a moving domain is investigated. The class includes the $p$-Laplace equation as a special case. Weak solutions are shown to be global by obtaining appropriate estimates on the gradient as well as a suitable version of Aubin-Lions lemma in moving domains.