论文标题
空间Kasner溶液和具有恒定能密度的无限平板
Spatial Kasner solution and an infinite slab with constant energy density
论文作者
论文摘要
我们研究了具有恒定能量密度的厚的无限平板,爱因斯坦方程的溶液。当平板平面上有各向异性时,我们找到了一个明确的精确溶液,该溶液与Rindler和Weyl-Levi-Civita spaceTimes匹配板外。我们还表明,有一些解决方案可以与平板外的一般各向异性Kasner Spacetime相匹配。无论如何,与众所周知的球形对称情况相比,不可能避免卡斯纳型奇异性的存在,在这种情况下,通过将内部Schwarzschild解决方案与外部匹配,可以消除坐标中心的奇异性。
We study the solutions of the Einstein equations in the presence of a thick infinite slab with constant energy density. When there is an isotropy in the plane of the slab, we find an explicit exact solution that matches with the Rindler and Weyl-Levi-Civita spacetimes outside the slab. We also show that there are solutions that can be matched with general anisotropic Kasner spacetime outside the slab. In any case, it is impossible to avoid the presence of the Kasner type singularities in contrast to the well-known case of spherical symmetry, where by matching the internal Schwarzschild solution with the external one, the singularity in the center of coordinates can be eliminated.