论文标题

多阶段分布在稳健的混合构成编程与决策矩歧义集的集合

Multistage Distributionally Robust Mixed-Integer Programming with Decision-Dependent Moment-Based Ambiguity Sets

论文作者

Yu, Xian, Shen, Siqian

论文摘要

我们研究了内源性不确定性下的多阶段分布在稳健的混合构成程序,其中阶段不确定性的概率分布取决于先前阶段的决策。我们首先考虑在不确定参数的第一和第二矩和均值和协方差矩阵上,由决策依赖性界限定义的两个歧义集,分别符合决策依赖性经验的矩阵。对于这两组,我们都表明,每个阶段的子问题都可以作为混合企业线性程序(MILP)重新铸造。此外,我们将基于一般力矩的歧义扩展到(Delage and Ye,2010)中的多阶段决策依赖性设置,并得出了阶段智慧子问题的混合成分半菲尼特编程(MISDP)的重新启动。我们开发了达到多阶段错误的最佳客观值的下限和上限的方法,并使用一系列MILP近似它们。我们部署了随机双动态整数编程(SDDIP)方法,用于解决三个具有风险中性或规避风险的目标函数的歧义集中的问题,并对在不同参数下具有多样化规模的多阶段设施实例实例进行数值研究。我们的结果表明,SDDIP在前两个歧义集中很快找到了中等大小实例的最佳解决方案,并且还为在第三个歧义集中得出的多阶段Misdps找到了良好的近似范围。我们还证明了将依赖决策的分布歧义纳入多阶段决策过程中的功效。

We study multistage distributionally robust mixed-integer programs under endogenous uncertainty, where the probability distribution of stage-wise uncertainty depends on the decisions made in previous stages. We first consider two ambiguity sets defined by decision-dependent bounds on the first and second moments of uncertain parameters and by mean and covariance matrix that exactly match decision-dependent empirical ones, respectively. For both sets, we show that the subproblem in each stage can be recast as a mixed-integer linear program (MILP). Moreover, we extend the general moment-based ambiguity set in (Delage and Ye, 2010) to the multistage decision-dependent setting, and derive mixed-integer semidefinite programming (MISDP) reformulations of stage-wise subproblems. We develop methods for attaining lower and upper bounds of the optimal objective value of the multistage MISDPs, and approximate them using a series of MILPs. We deploy the Stochastic Dual Dynamic integer Programming (SDDiP) method for solving the problem under the three ambiguity sets with risk-neutral or risk-averse objective functions, and conduct numerical studies on multistage facility-location instances having diverse sizes under different parameter and uncertainty settings. Our results show that the SDDiP quickly finds optimal solutions for moderate-sized instances under the first two ambiguity sets, and also finds good approximate bounds for the multistage MISDPs derived under the third ambiguity set. We also demonstrate the efficacy of incorporating decision-dependent distributional ambiguity in multistage decision-making processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源