论文标题
具有曲率的高空曲面的几乎最佳的多线性限制估计:r^n中的$ n-1 $ hypersurfaces的情况
The almost optimal multilinear restriction estimate for hypersurfaces with curvature: the case of $n-1$ hypersurfaces in R^n
论文作者
论文摘要
在本文中,我们建立了具有一定曲率的N-1 Hyperfaces的最佳多线性限制估计,其中$ n $是基础空间的维度。结果是尖锐的端点,并且在形状操作员方面精确地曲率的作用是精确的。
In this paper we establish the optimal multilinear restriction estimate for n-1 hypersurfaces with some curvature, where $n$ is the dimension of the underlying space. The result is sharp up to the endpoint and the role of curvature is made precise in terms of the shape operator.