论文标题
通过连接非磁原子和超导体上的人工结构的旋转链来控制间隙终端状态
Controlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors
论文作者
论文摘要
具有强旋轨耦合或螺旋磁序的磁原子的链,与超导底物接近耦合可以托管拓扑上非平凡的主要结合状态。这些状态的实验特征由费米能量的光谱重量组成,并在链端附近空间定位。然而,拓扑上的Yu-shiba-rusinov内置状态位于链末端附近,可能会导致相似的光谱。在这里,我们通过人为地增强具有椭圆形的非磁性原子的候选Majorana旋转链来探讨一项协议,以解除这些贡献。将扫描隧道光谱与AB-Initio和紧密结合计算相结合,我们实现了接近耦合的螺旋磁顺序与非磁性超导电线终止之间的急剧空间过渡,并具有持久的零能量光谱,并在磁性磁气的两端局部定位。我们的发现通过不同的链终端和实现设计师Majoraga链网络的实现来控制差异量子量量子计算的新途径,通向控制空隙端状态的空间位置。
Chains of magnetic atoms with either strong spin-orbit coupling or spiral magnetic order which are proximity-coupled to superconducting substrates can host topologically non-trivial Majorana bound states. The experimental signature of these states consists of spectral weight at the Fermi energy and spatially localized near the ends of the chain. However, topologically trivial Yu-Shiba-Rusinov in-gap states localized near the ends of the chain can lead to similar spectra. Here, we explore a protocol to disentangle these contributions by artificially augmenting a candidate Majorana spin chain with orbitally-compatible nonmagnetic atoms. Combining scanning tunneling spectroscopy with ab-initio and tight-binding calculations, we realize a sharp spatial transition between the proximity-coupled spiral magnetic order and the non-magnetic superconducting wire termination, with persistent zero-energy spectral weight localized at either end of the magnetic spiral. Our findings open a new path towards the control of the spatial position of in-gap end states, trivial or Majorana, via different chain terminations, and the realization of designer Majorana chain networks for demonstrating topological quantum computation.