论文标题

Ricci在某些同质空间上流动

Ricci flow on certain homogeneous spaces

论文作者

Statha, Marina

论文摘要

我们研究了无限的无穷大瓦拉赫空间中不一致的riemanian同质度量的归一化RICCI流动的行为,具有四吉式求和的广义国旗歧管,第二个贝蒂数量等于1,而stiefel complys $ v_2 \ v_2 \ Mathb {r}^n $ and $ v_ $ v_ n $ v _ n $ v_ 2} $ n = 1+k_2+k_3 $。我们使用微分方程理论,尤其是庞加莱紧凑型的技术。

We study the behavior of the normalized Ricci flow of invariant Riemannian homogeneous metrics at infinity for generalized Wallach spaces, generalized flag manifolds with four isotropy summands and second Betti number equal to one, and the Stiefel manifolds $V_2\mathbb{R}^n$ and $V_{1+k_2}\mathbb{R}^n$, with $n = 1+k_2+k_3$. We use techniques from the theory of differential equations, in particular the Poincaré compactification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源