论文标题

3D扰动的schrödingerhamiltonian在弗里德曼平坦的时空测试了非交换时空的原始宇宙

The 3D perturbed Schrödinger Hamiltonian in a Friedmann flat spacetime testing the primordial universe in a non commutative spacetime

论文作者

Fassari, S., Rinaldi, F., Viaggiu, S.

论文摘要

在本文中,我们适应了\ cite {p1}中提出的数学机械,以通过拉普拉斯 - 贝特拉米操作员获得schrödinger操作员的离散频谱,这是由弗里德曼平面世界中的Actractive 3D Delta相互作用扰动的。特别是,由于\ cite {p1}的处理,因此可以重新获得基态的离散频谱和上述宇宙框架中的第一个退出状态。因此,必须选择耦合常数$λ$作为宇宙comooving时间$ t $作为$λ/a^{2}(t)$的函数,$λ$是在\ cite {p1}中研究的静态汉密尔顿人之一。通过这种方式,我们可以引入一个与时间相关的Delta交互,该交互在原始宇宙中相关,其中$ a(t)\ rightarrow 0 $,并在后期变得可忽略不计,并带有$ a(t)>> 1 $。我们通过SO获得的模型研究了大爆炸附近强力态度的点相互作用提供的量子效应。特别是,作为一种物理上有趣的应用,我们提出了一种在半古典近似中描绘的方法,即(非交换性)量子时空中的测试粒子,在该测试粒子中,由于Planckian效应,最初的经典奇异性消失了,并且作为构成基础状态的基础状态,具有负能量。相反,在一种规模因子$ a(t)$遵循经典轨迹的情况下,这种基态是不稳定的,因此在物理上无法进行。

In this paper we adapt the mathematical machinery presented in \cite{P1} to get, by means of the Laplace-Beltrami operator, the discrete spectrum of the Hamiltonian of the Schrödinger operator perturbed by an actractive 3D delta interaction in a Friedmann flat universe. In particular, as a consequence of the treatment in \cite{P1} suitable for a Minkowski spacetime, the discrete spectrum of the ground state and the first exited state in the above mentioned cosmic framework can be regained. Thus, the coupling constant $λ$ must be choosen as a function of the cosmic comooving time $t$ as $λ/a^{2}(t)$, with $λ$ be the one of the static Hamiltonian studied in \cite{P1}. In this way we can introduce a time dependent delta interaction which is relevant in a primordial universe, where $a(t)\rightarrow 0$ and becomes negligible at late times, with $a(t)>>1$. We investigate, with the so obtained model, quantum effects provided by point interactions in a strong gravitational regime near the big bang. In particular, as a physically interesting application, we present a method to depict, in a semi-classical approximation, a test particle in a (non commutative) quantum spacetime where, thanks to Planckian effects, the initial classical singularity disappears and as a consequnce a ground state with negative energy emerges. Conversely, in a scenario where the scale factor $a(t)$ follows the classical trajectory, this ground state is instable and thus physically cannot be carried out.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源