论文标题

随机局部操纵下的Rényi纠缠熵的条件

Condition on the Rényi Entanglement Entropy under Stochastic Local Manipulation

论文作者

Kwon, Hyukjoon, Paige, A. J., Kim, M. S.

论文摘要

Rényi纠缠熵(REE)是一种纠缠量词,被认为是纠缠熵的自然概括。但是,当涉及到随机的本地操作和经典交流(SLOCC)时,只有有限的REE级别满足单调性条件,而其统计属性超出了平均值,但尚未得到充分研究。在这里,我们建立了一种一般条件,即在SloCC下遵守任何顺序的REE的概率分布。通过引入一个包含REE的高阶矩的纠缠单调家族来获得该条件。高阶力矩的贡献对通过SLOCC的纠缠蒸馏施加了严格的限制。我们发现,纠缠蒸馏的成功概率上的上限会随着增加的纠缠量增加而呈指数级别减少,这不能从REE的单调性中捕获。基于SLOCC下对纠缠转换的强限制,我们设计了一种新方法,以从实验可观察到的数量中估算量子多体系统中的纠缠。

The Rényi entanglement entropy (REE) is an entanglement quantifier considered as a natural generalisation of the entanglement entropy. When it comes to stochastic local operations and classical communication (SLOCC), however, only a limited class of the REEs satisfy the monotonicity condition, while their statistical properties beyond mean values have not been fully investigated. Here, we establish a general condition that the probability distribution of the REE of any order obeys under SLOCC. The condition is obtained by introducing a family of entanglement monotones that contain the higher-order moments of the REEs. The contribution from the higher-order moments imposes a strict limitation on entanglement distillation via SLOCC. We find that the upper bound on success probabilities for entanglement distillation exponentially decreases as the amount of raised entanglement increases, which cannot be captured from the monotonicity of the REE. Based on the strong restriction on entanglement transformation under SLOCC, we design a new method to estimate entanglement in quantum many-body systems from experimentally observable quantities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源