论文标题

$ \ mathbb {r}^3 $中的两个有色点集中的空平衡四面体上的注释

A Note on Empty Balanced Tetrahedra in Two colored Point sets in $\mathbb{R}^3$

论文作者

Díaz-Bañez, José M., Fabila-Monroy, Ruy, Urrutia, Jorge

论文摘要

令$ s $为$ n $ red和$ n $蓝点的一组,在$ \ mathbb {r}^3 $中处于一般位置。令$τ$为$ s $的顶点的四面体。我们说$τ$是\ emph {empty},如果它不包含其内部$ s $的任何点。我们说$τ$是\ emph {balanced},如果它包含两个蓝色顶点和两个红色顶点。在本文中,我们表明$ s $跨度$ω(n^{5/2})$空平衡四面体。

Let $S$ be a set of $n$ red and $n$ blue points in general position in $\mathbb{R}^3$. Let $τ$ be a tetrahedra with vertices on $S$. We say that $τ$ is \emph{empty} if it does not contain any point of $S$ in its interior. We say that $τ$ is \emph{balanced} if it contains two blue vertices and two red vertices. In this paper we show that $S$ spans $Ω(n^{5/2})$ empty balanced tetrahedra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源