论文标题
广告中分析边界条件的后果
Consequences of Analytic Boundary Conditions in AdS
论文作者
论文摘要
我们研究了分析边界指标对光滑渐近抗DE保姆引力溶液的影响。然后,边界动力学由由于转角条件所致的初始数据完全确定,所有平滑解决方案都必须服从。我们扰动许多熟悉的静态解决方案,并探索产生的边界动力学。我们找到了四个和六个维度的平面黑洞的非线性渐近不稳定性的证据。在四个维度中,我们发现至少指数增长的指示,而在六个维度上,似乎在边界上可能在有限的时间内形成奇异性。这种不稳定性扩展到纯广告(至少在Poincare Patch中)。对于我们考虑的扰动类别,在五个维度上没有这种不稳定的迹象。
We investigate the effects of an analytic boundary metric for smooth asymptotically anti-de Sitter gravitational solutions. The boundary dynamics is then completely determined by the initial data due to corner conditions that all smooth solutions must obey. We perturb a number of familiar static solutions and explore the boundary dynamics that results. We find evidence for a nonlinear asymptotic instability of the planar black hole in four and six dimensions. In four dimensions we find indications of at least exponential growth, while in six dimensions, it appears that a singularity may form in finite time on the boundary. This instability extends to pure AdS (at least in the Poincare patch). For the class of perturbations we consider, there is no sign of this instability in five dimensions.