论文标题

用于数据分析的广义规模行为和重新归一化组

Generalized scale behavior and renormalization group for data analysis

论文作者

Lahoche, Vincent, Samary, Dine Ousmane, Tamaazousti, Mohamed

论文摘要

最近的一些结果表明,重新归一化组可以被视为解决数据分析中开放问题的有前途的框架。在这项工作中,我们专注于这些方面之一,与主要的成分分析密切相关,以大大维数据集具有几乎连续的频谱。在这种情况下,“噪声样”和“非噪声”模式之间的区别变成了任意的,并且对标准方法的挑战是开放的挑战。观察到重新归一化组和主成分分析搜索涉及多个自由度的系统的简化,我们旨在使用重新归一化的组参数来阐明噪声和信息模式之间的转折点。在[统计物理学杂志,第167期,第3-4期,第462-475页,(2017年)]中,已经研究了粗粒元重新规定和主要成分分析之间的类比,从扰动框架中进行了类比,同一作者的实现数据表明,该过程可能反映出简单的正式形式类似。特别是,采样噪声模式的分离可以由非高斯固定点控制,让人联想到关键系统的行为。在我们的分析中,我们超越了使用非扰动技术来研究非高斯固定点的扰动框架,并提出了更深层次的形式主义,允许超越幂律假设进行明确计算。

Some recent results showed that renormalization group can be considered as a promising framework to address open issues in data analysis. In this work, we focus on one of these aspects, closely related to principal component analysis for the case of large dimensional data sets with covariance having a nearly continuous spectrum. In this case, the distinction between "noise-like" and "non-noise" modes becomes arbitrary and an open challenge for standard methods. Observing that both renormalization group and principal component analysis search for simplification for systems involving many degrees of freedom, we aim to use the renormalization group argument to clarify the turning point between noise and information modes. The analogy between coarse-graining renormalization and principal component analysis has been investigated in [Journal of Statistical Physics,167, Issue 3-4, pp 462-475, (2017)], from a perturbative framework, and the implementation with real sets of data by the same authors showed that the procedure may reflect more than a simple formal analogy. In particular, the separation of sampling noise modes may be controlled by a non-Gaussian fixed point, reminiscent of the behaviour of critical systems. In our analysis, we go beyond the perturbative framework using nonperturbative techniques to investigate non-Gaussian fixed points and propose a deeper formalism allowing going beyond power-law assumptions for explicit computations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源