论文标题

具有四重不变的地图的初始值的空间

Space of initial values of a map with a quartic invariant

论文作者

Gubbiotti, G., Joshi, N.

论文摘要

我们将平面图的初始值的空间压实并正规化,并用四分之一的不变性,并使用此构造在代数熵的意义上证明其集成性。该系统事实证明具有某些不寻常的属性,包括$ \ mathbb p^1 \ cross \ mathbb p^1 $中的一系列不确定性点。这些不确定点显示位于映射到相应的QRT系统的单数纤维上,并提供了一个特殊解决方案的一家参数家族。

We compactify and regularize the space of initial values of a planar map with a quartic invariant and use this construction to prove its integrability in the sense of algebraic entropy. The system turns out to have certain unusual properties, including a sequence of points of indeterminacy in $\mathbb P^1\cross \mathbb P^1$. These indeterminacy points are shown to lie on a singular fibre of the mapping to a corresponding QRT system and provide the existence of a one-parameter family of special solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源