论文标题
BV-BFV形式主义中的渐近对称性
Asymptotic symmetries in the BV-BFV formalism
论文作者
论文摘要
我们使用BV-BFV形式主义展示了如何在具有“渐近”边界的歧管上的现场理论得出渐近电荷。我们还证明,上述指控的保护自然是由于BFV边界行动的消失而自然而然的,并展示了这种构建如何将Noether的程序泛化。使用BV-BFV的观点,我们解决了文献中存在的争议,即大型仪表转换为渐近结构的对称性。我们表明,即使在这些转换下未保留渐近边界的符合性结构,但与BV-BFV哲学一致的失败受角数据的控制。我们详细分析了电动力学和相互作用的标量场的情况,为此,我们向来源的两种模型提供了一种新型的双重性。
We show how to derive asymptotic charges for field theories on manifolds with "asymptotic" boundary, using the BV-BFV formalism. We also prove that the conservation of said charges follows naturally from the vanishing of the BFV boundary action, and show how this construction generalises Noether's procedure. Using the BV-BFV viewpoint, we resolve the controversy present in the literature, regarding the status of large gauge transformation as symmetries of the asymptotic structure. We show that even though the symplectic structure at the asymptotic boundary is not preserved under these transformations, the failure is governed by the corner data, in agreement with the BV-BFV philosophy. We analyse in detail the case of electrodynamics and the interacting scalar field, for which we present a new type of duality to a sourced two-form model.