论文标题
由于形成的结果,超收星的化学多样性
Chemical Diversity of Super-Earths As a Consequence of Formation
论文作者
论文摘要
最近对岩石超收获的观察结果表明,与我们的太阳系中的行星相比,Fe/mg比或核心比率的分布明显更大。这项研究旨在了解超级地球人口中有多少化学多样性是由行星形成期间的巨大影响产生的。行星形成模拟直到最近才开始更真实地对待碰撞,以试图复制我们的太阳系中的行星。我们通过模拟使用Symba版本Symba(重力N体制代码)模拟具有不同初始条件的岩石上土地球的形成,从而更普遍地研究行星的形成。每次撞击后,我们跟踪组成的最大合理变化。最终行星跨越了类似于太阳系行星的Fe/mg比率的范围,但不完全匹配超收获数据中的分布。我们只形成几个具有少量铁排除的行星,这表明其他机制在起作用。最富含铁的行星的Fe/mg比率低于汞,并且比Kepler-100B等行星富集。这表明,需要进一步研究我们对行星形成的理解以及质量和半径测量精度的进一步提高,以在这种Fe/mg分布的极端解释行星。
Recent observations of rocky super-Earths have revealed an apparent wider distribution of Fe/Mg ratios, or core to mantle ratios, than the planets in our Solar System. This study aims to understand how much of the chemical diversity in the super-Earth population can arise from giant impacts during planetary formation. Planet formation simulations have only recently begun to treat collisions more realistically in an attempt to replicate the planets in our Solar System. We investigate planet formation more generally by simulating the formation of rocky super-Earths with varying initial conditions using a version of SyMBA, a gravitational N-body code, that incorporates realistic collisions. We track the maximum plausible change in composition after each impact. The final planets span a range of Fe/Mg ratios similar to the Solar System planets, but do not completely match the distribution in super-Earth data. We only form a few planets with minor iron-depletion, suggesting other mechanisms are at work. The most iron-rich planets have a lower Fe/Mg ratio than Mercury, and are less enriched than planets such as Kepler-100b. This indicates that further work on our understanding of planet formation and further improvement of precision of mass and radius measurements are required to explain planets at the extremes of this Fe/Mg distribution.