论文标题
粒子在高斯随机能量景观中的扩散:平均速度和扩散率的爱因斯坦关系和分析特性作为驱动力的功能
Diffusion of a particle in the Gaussian random energy landscape: Einstein relation and analytical properties of average velocity and diffusivity as functions of driving force
论文作者
论文摘要
我们证明,粒子在随机能量景观中扩散的爱因斯坦关系与状态的高斯密度是独家的1D特性,并且不在较高的维度中。我们还考虑了弱驱动力极限的粒子速度和扩散率的分析特性,并在这些特性与尺寸和随机能量景观的空间相关性之间建立联系。
We demonstrate that the Einstein relation for the diffusion of a particle in the random energy landscape with the Gaussian density of states is an exclusive 1D property and does not hold in higher dimensions. We also consider the analytical properties of the particle velocity and diffusivity for the limit of weak driving force and establish connection between these properties and dimensionality and spatial correlation of the random energy landscape.