论文标题
用于曲曲面的calabi-yau 3-纤维的开放式捕捉转化猜想
The Open Crepant Transformation Conjecture for Toric Calabi-Yau 3-Orbifolds
论文作者
论文摘要
我们证明了Ruan的Crepant Transformation猜想的开放版本,用于曲面的Calabi-yau 3-孔子,这是相对于通讯lagrangian lagrangian suborbifolds aganagic-vafa类型的k-等效性半标志性的calabi-yau 3- orbifolds的磁盘不变的识别。我们的主要工具是Fang-Liu-Tseng的镜像定理,该定理将这些磁盘不变性与B模型镜曲线上的本地坐标联系起来。我们将曲曲面的毛发转变视为GKZ次要风扇中的墙壁交叉,我们通过在次级品种的图表上构建全球镜曲线家族来确定磁盘不变性的识别,并了解局部坐标的分析延续。我们的工作将Brini-Cavalieri-Ross的先前结果推广到三型A型奇异点和Ke-Zhou的磁盘不变,并具有有效的外Branes的毛pan。
We prove an open version of Ruan's Crepant Transformation Conjecture for toric Calabi-Yau 3-orbifolds, which is an identification of disk invariants of K-equivalent semi-projective toric Calabi-Yau 3-orbifolds relative to corresponding Lagrangian suborbifolds of Aganagic-Vafa type. Our main tool is a mirror theorem of Fang-Liu-Tseng that relates these disk invariants to local coordinates on the B-model mirror curves. Treating toric crepant transformations as wall-crossings in the GKZ secondary fan, we establish the identification of disk invariants through constructing a global family of mirror curves over charts of the secondary variety and understanding analytic continuation on local coordinates. Our work generalizes previous results of Brini-Cavalieri-Ross on disk invariants of threefold type-A singularities and of Ke-Zhou on crepant resolutions with effective outer branes.