论文标题

半阳性线束的过渡函数的线性化沿特定的子手机束

Linearization of transition functions of a semi-positive line bundle along a certain submanifold

论文作者

Koike, Takayuki

论文摘要

令$ x $为复杂的歧管,$ l $是$ x $的全态线捆绑包。假设$ l $是半阳性的,即$ l $承认具有半阳性Chern曲率的光滑的Hermitian度量。让$ y $是$ x $的紧凑型kähler子手机,使得$ l $ to $ y $的限制在拓扑上是微不足道的。我们调查了$ l $的障碍物,以使其在$ x $的$ y $ y $ y $ y $ y $ y。例如,作为一种应用程序,我们显示了在非单明的射击表面上的NEF,BIG和非半阳性线束的存在。

Let $X$ be a complex manifold and $L$ be a holomorphic line bundle on $X$. Assume that $L$ is semi-positive, namely $L$ admits a smooth Hermitian metric with semi-positive Chern curvature. Let $Y$ be a compact Kähler submanifold of $X$ such that the restriction of $L$ to $Y$ is topologically trivial. We investigate the obstruction for $L$ to be unitary flat on a neighborhood of $Y$ in $X$. As an application, for example, we show the existence of nef, big, and non semi-positive line bundle on a non-singular projective surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源