论文标题

具有平等时间对称性的一维准晶体中的非热迁移率边缘

Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry

论文作者

Liu, Yanxia, Jiang, Xiang-Ping, Cao, Junpeng, Chen, Shu

论文摘要

我们研究了具有指数短距离跳跃的一维非甲状化晶格中的定位 - 偏置过渡,该晶格具有平等时代($ \ natercal {pt} $)对称性。在$ \ Mathcal {pt} $ - 对称点破坏点上,发现由非热的准潜力引起的本地化过渡。我们的结果还证明了能源依赖性迁移率边缘的存在,这些边缘将扩展状态与局部状态区分开,并且仅与欧吉征的实际部分有关。还研究了水平统计和Loschmidt回声动力学。

We investigate localization-delocalization transition in one-dimensional non-Hermitian quasiperiodic lattices with exponential short-range hopping, which possess parity-time ($\mathcal{PT}$) symmetry. The localization transition induced by the non-Hermitian quasiperiodic potential is found to occur at the $\mathcal{PT}$-symmetry-breaking point. Our results also demonstrate the existence of energy dependent mobility edges, which separate the extended states from localized states and are only associated with the real part of eigen-energies. The level statistics and Loschmidt echo dynamics are also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源