论文标题

锦标赛和强大的Erdős-Hajnal财产

Tournaments and the Strong Erdős-Hajnal Property

论文作者

Berger, Eli, Choromanski, Krzysztof, Chudnovsky, Maria, Zerbib, Shira

论文摘要

一个猜想的Alon,Pach和Solymosi等同于著名的Erdős-Hajnal的猜想,他指出,对于每个锦标赛而言,存在$ε(S)> 0 $,如果$ t $是$ n $ n $ vertex的锦标赛,则不包含$ s $ s $ s $ as the $ subtount $,那么$ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t $ t》至少包含一个频繁的零件。 $ n^{ε(s)} $ VERTICES。让$ C_5 $是独特的五个vertex锦标赛,每个顶点都有两个inneneighbors和两个超过两个。对于$ S = C_5 $的情况,已知Alon-Pach-Solymosi猜想是正确的。 Here we prove a strengthening of this result, showing that in every tournament $T$ with no subtorunament isomorphic to $C_5$ there exist disjoint vertex subsets $A$ and $B$, each containing a linear proportion of the vertices of $T$, and such that every vertex of $A$ is adjacent to every vertex of $B$.

A conjecture of Alon, Pach and Solymosi, which is equivalent to the celebrated Erdős-Hajnal Conjecture, states that for every tournament $S$ there exists $ε(S)>0$ such that if $T$ is an $n$-vertex tournament that does not contains $S$ as a subtournament, then $T$ contains a transitive subtournament on at least $n^{ε(S)}$ vertices. Let $C_5$ be the unique five-vertex tournament where every vertex has two inneighbors and two outneighbors. The Alon-Pach-Solymosi conjecture is known to be true for the case when $S=C_5$. Here we prove a strengthening of this result, showing that in every tournament $T$ with no subtorunament isomorphic to $C_5$ there exist disjoint vertex subsets $A$ and $B$, each containing a linear proportion of the vertices of $T$, and such that every vertex of $A$ is adjacent to every vertex of $B$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源