论文标题

2D半导体中激子形成的超快发作

The ultrafast onset of exciton formation in 2D semiconductors

论文作者

Trovatello, Chiara, Katsch, Florian, Borys, Nicholas J., Selig, Malte, Yao, Kaiyuan, Borrego-Varillas, Rocio, Scotognella, Francesco, Kriegel, Ilka, Yan, Aiming, Zettl, Alex, Schuck, P. James, Knorr, Andreas, Cerullo, Giulio, Conte, Stefano Dal

论文摘要

单层过渡金属二分法(TMDS)的平衡和非平衡光学性质由强结合的激子确定。 TMD中的激子松弛动力学已通过时域光谱镜进行了广泛的研究。然而,由于其固有的快速时间尺度,自由电子孔对的非共鸣光激发后激素的形成动力学是直接探测的具有挑战性的。在这里,我们使用极短的光学脉冲来非刺激性激发电子血浆,并通过诱导的吸收吸收变化在30 fs的时间尺度上显示了单层MOS2中二维激子的形成。这些形成动力学的速度明显快于常规2D量子井中,这归因于2D TMD中存在的强烈库仑相互作用。一个相干极化的理论模型,它使不一致的激子种群放松并放松,重现了Sub-100-FS时间表上的实验动力学,并将灯光放到了基本的机制中,该机制是如何最低的能量激子,这对于OptoelectRonic应用是最重要的,这是对较高的Enerergy Enerergy Enerergy cocitiations的最重要的。重要的是,发现从高能状态到地面激子状态的声子介导的激子级联反应是限制速率的过程。这些结果设定了TMD中激子形成的最终时间尺度,并阐明了此过程背后的特殊物理机制。

The equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales. Here we use extremely short optical pulses to non-resonantly excite an electron-hole plasma and show the formation of two-dimensional excitons in single-layer MoS2 on the timescale of 30 fs via the induced changes to photo-absorption. These formation dynamics are significantly faster than in conventional 2D quantum wells and are attributed to the intense Coulombic interactions present in 2D TMDs. A theoretical model of a coherent polarization that dephases and relaxes to an incoherent exciton population reproduces the experimental dynamics on the sub-100-fs timescale and sheds light into the underlying mechanism of how the lowest-energy excitons, which are the most important for optoelectronic applications, form from higher-energy excitations. Importantly, a phonon-mediated exciton cascade from higher energy states to the ground excitonic state is found to be the rate-limiting process. These results set an ultimate timescale of the exciton formation in TMDs and elucidate the exceptionally fast physical mechanism behind this process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源