论文标题

在$ l^p $空间上的解决条件和运营商的力量增长

Resolvent conditions and growth of powers of operators on $L^p$ spaces

论文作者

Cuny, Christophe

论文摘要

令$ t $为$ l^p $上的有界线性运算符。我们研究了在解决条件或CESàRO有限假设下$ t $的权力规范的增长率。实际上,在我们的研究中,$ l^p $空间的相关属性是它们的类型和cotype,而$ 1 <p <\ infty $,它们是UMD的事实。一些证据利用Banach空间上的傅立叶乘数,这说明了为什么UMD空间发挥作用。

Let $T$ be a bounded linear operator on $L^p$. We study the rate of growth of the norms of the powers of $T$ under resolvent conditions or Cesàro boundedness assumptions. Actually the relevant properties of $L^p$ spaces in our study are their type and cotype, and for $1<p<\infty$, the fact that they are UMD. Some of the proofs make use of Fourier multipliers on Banach spaces, which explains why UMD spaces come into play.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源