论文标题
正交3-lie同态的过度性:正交点方法
Hyperstability of orthogonally 3-Lie homomorphism: an orthogonally fixed point approach
论文作者
论文摘要
在本文中,通过使用正交固定点方法,我们证明了Hyers-ulam稳定性以及对3个lie代数的添加$ρ$功能方程的正交3- lie同构的性能。\\的确,我们调查了hyers-ulam稳定性和函数方程的超出性能。 \ begin {array} {ll} f(x+ y)-f(x)-f(y)=ρ(2f(\ frac {x+ y} {2} {2})+ f(x)+ f(y)),\\ f([[x,y],z])= [[f(x),f(y)],f(z)] \ end {array} \ right。 \ end {eqnarray*}在3-lie代数中(其中$ρ$是固定的实数,带有$ρ\ ne 1 $)。
In this paper, by using the orthogonally fixed point method, we prove the Hyers-Ulam stability and the hyperstability of orthogonally 3-Lie homomorphisms for additive $ρ$-functional equation in 3-Lie algebras.\\ Indeed, we investigate the Hyers-Ulam stability and the hyperstability of the system of functional equations \begin{eqnarray*} \left\{ \begin{array}{ll} f(x+y)-f(x)-f(y)= ρ(2f(\frac{x+y}{2})+ f(x)+ f(y)),\\ f([[x,y],z])=[[f(x),f(y)],f(z)] \end{array} \right. \end{eqnarray*} in 3-Lie algebras (where $ρ$ is a fixed real number with $ρ\ne 1$).