论文标题
2-D Prandtl方程的爆破标准
Blow-up criterion for the 2-D Prandtl equation
论文作者
论文摘要
在本文中,我们考虑具有恒定外流和单调数据的2-D PRANDTL方程。我们证明,如果速度分布的曲率(即$ \ partial_y^2u $)在边界附近有限,那么解决方案将无法发展奇异性。
In this paper, we consider the 2-D Prandtl equation with constant outer flow and monotonic data. We prove that if the curvature of the velocity distribution(i.e., $\partial_y^2u$) is bounded near the boundary, then the solution can not develop the singularity.