论文标题

量化量子加速:更紧密的魔术单调改进的经典模拟

Quantifying quantum speedups: improved classical simulation from tighter magic monotones

论文作者

Seddon, James R., Regula, Bartosz, Pashayan, Hakop, Ouyang, Yingkai, Campbell, Earl T.

论文摘要

魔术状态的消耗促进了通用量子计算的稳定计算模型。在这里,我们提出了三种不同的经典算法来模拟这种通用量子电路,并通过与魔术单调家族建立精确的联系来表征它们。我们的第一个模拟器引入了一类新类的准稳定性分布,并将其运行时连接到一个普遍的负面概念。我们证明,与所有先前的Quasiprobosibalsion Migulators相比,该算法已显着改善了指数缩放。我们的第二个模拟器是稳定器级模拟算法的新变体,扩展到混合状态并具有显着改善的运行时边界。我们的第三个模拟器通过丢弃负面的准生产力来换取速度的精度。我们将每种算法的性能连接到相应的魔术单调,并且通过全面表征单调,我们可以准确地了解模拟运行时和错误界限。我们的分析揭示了所有三种看似无关的仿真技术及其相关单调之间的密切联系。对于单量状态的张量产品,我们证明我们的单调酮彼此相等,乘法且有效地计算,从而使我们可以对模拟器的性能缩放进行清晰的比较。此外,我们的单调酮在状态互转换和蒸馏速率上建立了几个渐近和非扰动界限。除了魔术状态的理论之外,我们的经典模拟器可以在某些公理下适应其他资源理论,我们通过对量子相干理论的明确应用来证明这一点。

Consumption of magic states promotes the stabilizer model of computation to universal quantum computation. Here, we propose three different classical algorithms for simulating such universal quantum circuits, and characterize them by establishing precise connections with a family of magic monotones. Our first simulator introduces a new class of quasiprobability distributions and connects its runtime to a generalized notion of negativity. We prove that this algorithm has significantly improved exponential scaling compared to all prior quasiprobability simulators for qubits. Our second simulator is a new variant of the stabilizer-rank simulation algorithm, extended to work with mixed states and with significantly improved runtime bounds. Our third simulator trades precision for speed by discarding negative quasiprobabilities. We connect each algorithm's performance to a corresponding magic monotone and, by comprehensively characterizing the monotones, we obtain a precise understanding of the simulation runtime and error bounds. Our analysis reveals a deep connection between all three seemingly unrelated simulation techniques and their associated monotones. For tensor products of single-qubit states, we prove that our monotones are all equal to each other, multiplicative and efficiently computable, allowing us to make clear-cut comparisons of the simulators' performance scaling. Furthermore, our monotones establish several asymptotic and non-asymptotic bounds on state interconversion and distillation rates. Beyond the theory of magic states, our classical simulators can be adapted to other resource theories under certain axioms, which we demonstrate through an explicit application to the theory of quantum coherence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源