论文标题
Flatland的激子 - 果龙:控制Lieb晶格中的平板特性
Exciton-polaritons in flatland: Controlling flatband properties in a Lieb lattice
论文作者
论文摘要
近年来,由于其独特的物理特性,新型的二维材料,例如石墨烯,二苯烷和过渡金属二分法元素引起了极大的兴趣。可以通过创建模仿这些二维材料的人工光子晶格来传递一系列物理效应。在这里,半导体微腔中的激子 - 果胶为研究一部分,部分的量子流体提供了一个令人兴奋的机会,它们具有复杂的晶格潜力。在本文中,我们研究了埋入光学陷阱的二维Lieb晶格中的激子 - 果龙。 $ s $和$ p_ {xy} $光子轨道的光子轨道产生了两个平坦带的形成,这对于无真错存储紧凑的局部状态具有最大的兴趣。通过使用良好控制的蚀刻和过渡技术,我们设法以极高的精度控制了陷阱以及站点耦合。这使我们能够通过光谱监测整个布里群区域的平板的平坦度。此外,我们通过实验证明,在非共振激发激发下,可以通过凝结直接填充这些平带。最后,使用这种先进的设备方法,我们证明了传输几何形状中平带模式的共鸣和确定性激发。我们的发现建立了激子 - 帕利顿系统作为一种高度可控的光学多体系统,用于研究平板效应和无真错的局部局部状态。
In recent years, novel two-dimensional materials such as graphene, bismuthene and transition-metal dichalcogenides have attracted considerable interest due to their unique physical properties. A range of physical effects can be transferred to the realms of photonics by creating artificial photonic lattices emulating these two-dimensional materials. Here, exciton-polaritons in semiconductor microcavities offer an exciting opportunity to study a part-light, part-matter quantum fluid of light in a complex lattice potential. In this paper, we study exciton-polaritons in a two-dimensional Lieb lattice of buried optical traps. The $S$ and $P_{xy}$ photonic orbitals of such a Lieb lattice give rise to the formation of two flatbands which are of greatest interest for the distortion-free storage of compact localized states. By using a well controlled etch-and-overgrowth technique, we manage to control the trapping as well as the site couplings with great precision. This allows us to spectroscopically monitor the flatness of the flatbands across the full Brillouin zone. Furthermore, we demonstrate experimentally that these flatbands can be directly populated by condensation under non-resonant laser excitation. Finally, using this advanced device approach we demonstrate resonant and deterministic excitation of flatband modes in transmission geometry. Our findings establish the exciton-polariton systems as a highly controllable, optical many-body system to study flatband effects and for distortion-free storage of compact localized states.