论文标题
关于约旦代数和一些统一结果
On Jordan algebras and some unification results
论文作者
论文摘要
本文基于在7月9日至7月11日至2019年7月11日至2019年7月11日至2019年7月11日至7月11日之间由Ploiesti主持的关于差异几何形状及其应用的第14--国际研讨会上的演讲。我们将考虑一些与统一方法有关的几何学问题。约旦代数和谎言代数是主要的非缔合结构。试图统一非社交代数和联想代数的尝试导致了UJLA结构。 Yang-Baxter方程是另一个统一非缔合代数和联想代数的代数结构。我们将回顾Yang-Baxter方程和Yang-Baxter系统的主题,其目标是将构造从微分几何形状统一。
This paper is based on a talk given at the 14-th International Workshop on Differential Geometry and Its Applications, hosted by the Petroleum Gas University from Ploiesti, between July 9-th and July 11-th, 2019. After presenting some historical facts, we will consider some geometry problems related to unification approaches. Jordan algebras and Lie algebras are the main non-associative structures. Attempts to unify non-associative algebras and associative algebras led to UJLA structures. Another algebraic structure which unifies non-associative algebras and associative algebras is the Yang-Baxter equation. We will review topics relared to the Yang-Baxter equation and Yang-Baxter systems, with the goal to unify constructions from Differential Geometry.