论文标题
时间依赖的松弛磁性水力动力学 - 使用相位空间作用包含跨螺旋性约束
Time-dependent relaxed magnetohydrodynamics -- inclusion of cross helicity constraint using phase-space action
论文作者
论文摘要
时间依赖性松弛磁性水力动力学(RXMHD)的新表述是从汉密尔顿的作用原理中衍生而来的,该原理是使用显微镜保守的质量保存以及对总磁想要型,交叉螺旋和熵的宏观保护,这是对密度,流体,流体,流体效应和磁性的唯一约束,是唯一的约束。 MHD Lagrangian的新型相空间版本是衍生得出的,它为Euler-拉格朗日方程式提供了与以前的作品相一致的,该方程与精确的理想和放松的MHD均衡相一致,但可以从流量上进行,但将放松概念从静电史到动力学进行了推广。在短波长线性波中说明了新的动力形式主义的应用,并得出了多间隔松弛MHD(MRXMHD)的界面连接条件。 $ \ vec {e} + \ vec {u} \ times \ vec {b} = 0 $是否应讨论一个约束的问题。
A new formulation of time-dependent Relaxed Magnetohydrodynamics (RxMHD) is derived variationally from Hamilton's Action Principle using microscopic conservation of mass, and macroscopic conservation of total magnetic helicity, cross helicity and entropy, as the only constraints on variations of density, pressure, fluid velocity, and magnetic vector potential over a relaxation domain. A novel phase-space version of the MHD Lagrangian is derived, which gives Euler--Lagrange equations consistent with previous work on exact ideal and relaxed MHD equilibria with flow, but generalizes the relaxation concept from statics to dynamics. The application of the new dynamical formalism is illustrated for short-wavelength linear waves, and the interface connection conditions for Multiregion Relaxed MHD (MRxMHD) are derived. The issue of whether $\vec{E} + \vec{u}\times\vec{B} = 0$ should be a constraint is discussed.