论文标题
关于一类R-对称测量的一致性6D N =(1,0)超级
On the consistency of a class of R-symmetry gauged 6D N=(1,0) supergravities
论文作者
论文摘要
R-Amsmetry从所有局部异常中免费测量了6D(1,0)超级,其中规格组$ G \ times g_r $,其中$ g_r $是r-smmetry群体,$ g $ and ymemimple是半级别,排名大于一个,并且没有Hypermultiplet Singlets,非常罕见。有三种这样的模型,其中规格对称组为$ g_1 \ times g_2 \ times u(1)_r $,其中前两个因素为$ \ weft(e_6/{\ sathbb {z} _3} _3} _3} \ pirs)这些是具有单张量多重的型号,分别在$(1,912)$,$(14,56)$和$(52,18)$(52,18)$ dimensional表示为$ g_1 \ times g_2 $中。到目前为止,尚不清楚这些模型是否来自字符串理论。我们强调了这些理论的关键特性,并检查了可能由Monnier和Moore以最强形式提出的异常系数量化的一致性产生的约束。假设测量模型可容纳二聚态弦激励,我们发现这些约束只有$ f_4 \ times sp(9)\ times u(1)_r $ symemetry才能满足这些约束。我们还讨论了二聚态弦和潜在警告的各个方面,它们可能会在将既定的一致性条件应用于$ r $ symmetry量的模型时提出。
R-symmetry gauged 6D (1,0) supergravities free from all local anomalies, with gauge groups $G\times G_R$ where $G_R$ is the R-symmetry group and $G$ is semisimple with rank greater than one, and which have no hypermultiplet singlets, are extremely rare. There are three such models known in which the gauge symmetry group is $G_1\times G_2 \times U(1)_R$ where the first two factors are $ \left(E_6/{\mathbb{Z}_3}\right) \times E_7$, $ G_2 \times E_7 $ and $F_4 \times Sp(9)$. These are models with single tensor multiplet, and hyperfermions in the $(1,912)$, $(14,56)$ and $(52,18)$ dimensional representations of $G_1\times G_2$, respectively. So far it is not known if these models follow from string theory. We highlight key properties of these theories, and examine constraints which may arise from the consistency of the quantization of anomaly coefficients formulated in their strongest form by Monnier and Moore. Assuming that the gauged models accommodate dyonic string excitations, we find that these constraints are satisfied only by the model with the $F_4 \times Sp(9)\times U(1)_R$ symmetry. We also discuss aspects of dyonic strings and potential caveats they may pose in applying the stated consistency conditions to the $R$-symmetry gauged models.