论文标题
与零星群体对称性的保形场理论
Conformal Field Theories with Sporadic Group Symmetry
论文作者
论文摘要
怪物零星组是中央电荷的自动形态组$ c = 24 $顶点操作员代数(VOA)或Meromorormormorphic共形场理论(CFT)。除了其$ c = 24 $压力张量$ t(z)$外,该理论还包含许多其他较小的中央电荷的共形向量;例如,它承认$ 48 $通勤$ c = \ frac12 $共形矢量的总和为$ t(z)$。这种压力张量的分解使人们可以以类似于Offine offine lie代数的方式,以类似于Goddard-Kent-Olive(GKO)coset方法来构建新的CFT。我们使用此程序来为存在许多具有零星对称组的CFT提供证据,并采用各种技术,包括Hecke操作员,模块化线性微分方程和Rademacher总和来计算这些CFT的字符。我们的示例包括(扩展)九个零星组,作为怪物的子粒子,以及简单的组$ {}^2 {e} _6 _6(2)$和$ {f} _4(2)lie类型的$。这些示例中的许多自然与McKay的$ \ wideHat {e_8} $对应关系相关联,我们使用Norton的Monstralizer配对的结构来组织我们的演示文稿。
The monster sporadic group is the automorphism group of a central charge $c=24$ vertex operator algebra (VOA) or meromorphic conformal field theory (CFT). In addition to its $c=24$ stress tensor $T(z)$, this theory contains many other conformal vectors of smaller central charge; for example, it admits $48$ commuting $c=\frac12$ conformal vectors whose sum is $T(z)$. Such decompositions of the stress tensor allow one to construct new CFTs from the monster CFT in a manner analogous to the Goddard-Kent-Olive (GKO) coset method for affine Lie algebras. We use this procedure to produce evidence for the existence of a number of CFTs with sporadic symmetry groups and employ a variety of techniques, including Hecke operators, modular linear differential equations, and Rademacher sums, to compute the characters of these CFTs. Our examples include (extensions of) nine of the sporadic groups appearing as subquotients of the monster, as well as the simple groups ${}^2{E}_6(2)$ and ${F}_4(2)$ of Lie type. Many of these examples are naturally associated to McKay's $\widehat{E_8}$ correspondence, and we use the structure of Norton's monstralizer pairs more generally to organize our presentation.