论文标题
在磁铁中对磁流体动力学平衡进行建模,并应用用于连续重力波的产生
Modeling Magnetohydrodynamic Equilibrium in Magnetars with Applications to Continuous Gravitational Wave Production
论文作者
论文摘要
磁铁在宇宙中拥有最强的磁场,标志着物理现象的极值。它们的磁场强度足以使恒星体的形状变形,当旋转和磁轴不排列时,这些变形会导致引力波(GWS)的产生(GWS),通过时间变化的四极力矩。这种引力辐射与当前可通过激光干涉仪重力波观测器检测到的信号不同。这些信号是连续的,而不是二进制系统在灵感,合并和响声阶段中产生的暂时的“ chirp”波形。我们评估了GW探测器未来迭代对磁铁产生的连续GW信号的敏感性要求。在这里,我们为具有强内部磁场的磁场恒星结构构建了一个计算模型。我们实现了状态(EOS)的n = 1多环形方程,并采用了由EOS选择约束的混合磁场和环形磁场模型。我们利用磁场磁场强度和各种恒星物理属性来利用基准值。通过计算模拟,我们测量了磁铁恒星结构的变形,以确定由于这些变形导致非轴对称旋转而形成的连续GWS强度的上限。我们计算McGill MagnetAr目录中源的上限GW应变值的预测,这是所有检测到的磁铁的指数。
Possessing the strongest magnetic fields in the Universe, magnetars mark an extremum of physical phenomena. The strength of their magnetic fields is sufficient to deform the shape of the stellar body, and when the rotational and magnetic axes are not aligned, these deformations lead to the production of gravitational waves (GWs) via a time-varying quadrupole moment. Such gravitational radiation differs from signals presently detectable by the Laser Interferometer Gravitational-Wave Observatory. These signals are continuous rather than the momentary 'chirp' waveforms produced by binary systems during the phases of inspiral, merger, and ringdown. We evaluate the sensitivity requirements of future iterations of GW detectors to continuous GW signals resulting from magnetars. Here, we construct a computational model for magnetar stellar structure with strong internal magnetic fields. We implement an n = 1 polytropic equation of state (EOS) and adopt a mixed poloidal and toroidal magnetic field model constrained by the choice of EOS. We utilize fiducial values for magnetar magnetic field strength and various stellar physical attributes. Via computational simulation, we measure the deformation of magnetar stellar structure to determine upper bounds on the strength of continuous GWs formed as a result of these deformations inducing non-axisymmetric rotation. We compute predictions of upper limit GW strain values for sources in the McGill Magnetar Catalog, an index of all detected magnetars.