论文标题

Dyakonov-Tamm表面波,具有Dyakonov-Tamm-Voigt表面波

Dyakonov-Tamm surface waves featuring Dyakonov-Tamm-Voigt surface waves

论文作者

Zhou, Chenzhang, Mackay, Tom G., Lakhtakia, Akhlesh

论文摘要

Dyakonov-Tamm(DT)的表面波的传播通过相应的规范边界值问题在理论上和数值上研究了两个非隔离材料$ a $和$ b $的平面界面的传播。材料$ a $是一种均匀的单轴介电材料,其视轴相对于接口平面的角度$χ$。材料$ b $是一种各向同性介电材料,在界面正常的方向上定期非均匀。考虑了特殊情况,其中材料$ a $的传播矩阵不可用,因为相应的表面波命名为Dyakonov-Tamm-voigt(DTV)表面波 - HAS不寻常的定位特性。 DTV表面波的衰减由线性函数的乘积和与材料$ a $中界面距离的指数函数给出。相反,常规DT表面波的场仅在距界面距离的情况下呈指数型衰减。数值研究表明,根据材料$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a和$ b $的固定传播方向可能存在多个DT表面波。当被视为界面平面中传播角度的函数时,可以将多个DT表面波溶液作为连续分支组织。当材料$ a $的各向异性程度更大时,存在更多的DT溶液分支。如果$χ= 0^\ circ $,则存在一个单独的DTV解决方案,可在每个DT分支解决方案上一个唯一的传播方向。如果$χ> 0^\ circ $,则不存在DTV解决方案。随着材料$ b $的非均匀性程度降低,DT溶液分支的数量减少。

The propagation of Dyakonov-Tamm (DT) surface waves guided by the planar interface of two nondissipative materials $A$ and $B$ was investigated theoretically and numerically, via the corresponding canonical boundary-value problem. Material $A$ is a homogeneous uniaxial dielectric material whose optic axis lies at an angle $χ$ relative to the interface plane. Material $B$ is an isotropic dielectric material that is periodically nonhomogeneous in the direction normal to the interface. The special case was considered in which the propagation matrix for material $A$ is non-diagonalizable because the corresponding surface wave-named the Dyakonov-Tamm-Voigt (DTV) surface wave-has unusual localization characteristics. The decay of the DTV surface wave is given by the product of a linear function and an exponential function of distance from the interface in material $A$; in contrast, the fields of conventional DT surface waves decay only exponentially with distance from the interface. Numerical studies revealed that multiple DT surface waves can exist for a fixed propagation direction in the interface plane, depending upon the constitutive parameters of materials $A$ and $B$. When regarded as functions of the angle of propagation in the interface plane, the multiple DT surface-wave solutions can be organized as continuous branches. A larger number of DT solution branches exist when the degree of anisotropy of material $A$ is greater. If $χ= 0^\circ$ then a solitary DTV solution exists for a unique propagation direction on each DT branch solution. If $χ> 0^\circ$, then no DTV solutions exist. As the degree of nonhomogeneity of material $B$ decreases, the number of DT solution branches decreases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源