论文标题

偏置淬灭陷阱模型中异常扩散的痕迹

Trace of anomalous diffusion in a biased quenched trap model

论文作者

Akimoto, Takuma, Saito, Keiji

论文摘要

在存在偏见的情况下,在淬灭的异质环境上的扩散被分析。可以应用第一个流量时统计量来获得周期性淬灭环境中的漂移和扩散系数。我们显示了几个过渡点,即使系统大小变大,即非自动平衡的样品对样品对样品的波动或扩散系数的波动仍然很大。此外,我们发现扩散系数的平均疾病分别分散或当相应的退火模型分别产生超扩散或细胞扩散时变为零。该结果意味着在退火模型中的异常扩散是通过相应淬灭模型中扩散系数的异常追踪的。

Diffusion on a quenched heterogeneous environment in the presence of bias is considered analytically. The first-passage-time statistics can be applied to obtain the drift and the diffusion coefficient in periodic quenched environments. We show several transition points at which sample-to-sample fluctuations of the drift or the diffusion coefficient remain large even when the system size becomes large, i.e., non-self-averaging. Moreover, we find that the disorder average of the diffusion coefficient diverges or becomes zero when the corresponding annealed model generates superdiffusion or subdiffusion, respectively. This result implies that anomalous diffusion in an annealed model is traced by anomaly of the diffusion coefficients in the corresponding quenched model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源