论文标题

在有限字段上存在一些特殊的原始元素

On existence of some special pair of primitive elements over finite fields

论文作者

Carvalho, C., Sousa, J. P. G., Neumann, V. G. L., Tizziotti, G.

论文摘要

在本文中,我们概括了Sharma,Awasthi和Gupta的结果(请参阅\ cite {sag})。我们在具有$ q = p^k $元素的任何特征的领域工作,我们为存在的原始元素$α\ in \ mathbb {f} _ {p^k} $提供了足够的条件\ mathbb {f} _ {p^k}(x)$是具有一些限制的多项式的商。我们明确地确定了$ k $的值,该$ k $以$ p = 2,3,5 $和$ 7 $存在。

In this paper we generalize the results of Sharma, Awasthi and Gupta (see \cite{SAG}). We work over a field of any characteristic with $q = p^k$ elements and we give a sufficient condition for the existence of a primitive element $α\in \mathbb{F}_{p^k}$ such that $f(α)$ is also primitive in $\mathbb{F}_{p^k}$, where $f(x) \in \mathbb{F}_{p^k}(x)$ is a quotient of polynomials with some restrictions. We explicitly determine the values of $k$ for which such a pair exists for $p=2,3,5$ and $7$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源