论文标题

Wigner功能的量子性质,用于通货膨胀量的扰动

Quantum nature of Wigner function for inflationary tensor perturbations

论文作者

Gong, Jinn-Ouk, Seo, Min-Seok

论文摘要

我们研究了在实际相空间中定义的通胀张量扰动的Wigner函数。我们明确计算Wigner函数,包括来自张量扰动的Cubic自我交往Hamiltonian的贡献。然后,我们认为,这不再是概率分布的适当描述,即量子性质允许消失相变的消失性。这是由于超级和亚匹配模式之间的非线性相互作用而导致混合状态下的非高斯波函数。我们还表明,这与Wigner函数中的显式红外差异有关,与密度矩阵的轨迹相反。

We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源