论文标题

在一般曲线上的半稳定捆绑包的模量堆栈的重言式代数

Tautological algebra of the moduli stack of semi stable bundles of rank two on a general curve

论文作者

Gangopadhyay, Chandranandan, Iyer, Jaya NN, Mukherjee, Arijit

论文摘要

我们本文的目的是确定Brill Noether基因座的共同体学类别在Moduli stack $ \ Mathcal {U} _C(N,D)等级$ n $ and deg $ d $的可分辨捆绑包中产生的重言式代数。当$ c $是一条普通平滑的投射曲线时,$ g \ geq 2 $,$ n = 2 $,$ d = 2g-2 $,$ \ nathcal {u} _c(2,2g-2)$的重言式代数(分别是$ \ $ \ \ \ \ \ \ \ \ \ {su} _c(su} _c(2,l)$,$ claste $ claste $ claster $ claste; theta除数$θ$)。

Our aim in this paper is to determine the tautological algebra generated by the cohomology classes of the Brill Noether loci in the rational cohomology of the moduli stack $\mathcal{U}_C(n,d)$ of semistable bundles of rank $n$ and degree $d$. When $C$ is a general smooth projective curve of genus $g\geq 2$, $n=2$, $d=2g-2$, the tautological algebra of $ \mathcal{U}_C(2,2g-2)$ (resp. $\mathcal{SU}_C(2,L)$, $deg(L)=2g-2)$) is generated by the divisor classes (resp. the Theta divisor $Θ$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源