论文标题
$ 2P^m $的一类第四纪序列的自相关
Autocorrelation of a class of quaternary sequences of period $2p^m$
论文作者
论文摘要
具有良好随机性属性的序列对于流密码非常重要。在本文中,通过使用$ \ mathbb {z} _ {2p^m} $ $(M \ geq1)$的通用环流类别构建新的第四纪序列。这些序列的自相关的确切值是基于$ 2 $的订单$ 2 $的$ p^m $确定的。结果表明,提出的序列具有最多$ 4 $值的自相关。
Sequences with good randomness properties are quite important for stream ciphers. In this paper, a new class of quaternary sequences is constructed by using generalized cyclotomic classes of $\mathbb{Z}_{2p^m}$ $(m\geq1)$. The exact values of autocorrelation of these sequences are determined based on cyclotomic numbers of order $2$ with respect to $p^m$. Results show that the presented sequences have the autocorrelations with at most $4$ values.