论文标题
与矩形相关的复曲面理想基础
Gröbner bases of toric ideals associated with matroids
论文作者
论文摘要
1980年,白色猜想是由与对称交换相对应的二项式二项式产生的曲线曲面理想。在本文中,我们计算了与矩形相关的复曲面理想基础的基础,并表明,对于最多七个地面的每个矩形,除了两个矩形外,八曲状理想的gröbner基础由二次二项式组成,这些二项式二进制次数对应于对称交换。
In 1980, White conjectured that the toric ideal of a matroid is generated by quadratic binomials corresponding to a symmetric exchange. In this paper, we compute Gröbner bases of toric ideals associated with matroids and show that, for every matroid on ground sets of size at most seven except for two matroids, Gröbner bases of toric ideals consist of quadratic binomials corresponding to a symmetric exchange.