论文标题

绝不正方形的三元单词的长度

Lengths of extremal square-free ternary words

论文作者

Mol, Lucas, Rampersad, Narad

论文摘要

如果每个单词从$ w $获得的每个单词通过插入$σ$(在任何位置)中包含一个正方形的单个字母,则固定字母$σ$上的无方$ w $都是极端的。 Grytczuk等。最近介绍了无极大正方形词的概念,并证明存在任意长的无极端平方三元单词。我们发现所有允许极端无方形三元字的长度。特别是,我们表明每个足够大的长度都有一个无极端的三元字。我们还解决了圆形单词的类似问题。

A square-free word $w$ over a fixed alphabet $Σ$ is extremal if every word obtained from $w$ by inserting a single letter from $Σ$ (at any position) contains a square. Grytczuk et al. recently introduced the concept of extremal square-free word, and demonstrated that there are arbitrarily long extremal square-free ternary words. We find all lengths which admit an extremal square-free ternary word. In particular, we show that there is an extremal square-free ternary word of every sufficiently large length. We also solve the analogous problem for circular words.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源