论文标题
对数系数的求解解决方案
Solution of the logarithmic coefficients conjecture in some families of univalent functions
论文作者
论文摘要
对于单价和归一化的功能$ f $对数系数$γ_n(f)$由公式$ \ log(f(z)/z)= \ sum_ {n = 1}^{\ infty} {\ infty}2γ_n(f)2γ_n(f)z^n $确定。在论文\ cite {pon}中,作者提出了一个猜想,即单位磁盘中的本地函数,满足条件\ [\ [\ re \ left \ left \ {1+zf''(z)/f'(z)/f'(z)\ right \ right \ right \ right \ right \ right \ right \ right \ right \ 1+λ/2+λ/2 \ quad(z \ quad(z \ quad in \ in \ int \ nr \ nathb}} d} 还满足以下不等式:$$ |γ_n(f)| \leλ/(2n(n+1))。$$这里$λ$是一个真实数字,因此$ 0 <λ\ le 1 $。在论文中,我们确认猜想是真实而敏锐的。
For univalent and normalized functions $f$ the logarithmic coefficients $γ_n(f)$ are determined by the formula $\log(f(z)/z)=\sum_{n=1}^{\infty}2γ_n(f)z^n$. In the paper \cite{Pon} the authors posed the conjecture that a locally univalent function in the unit disk, satisfying the condition \[ \Re\left\{1+zf''(z)/f'(z)\right\}<1+λ/2\quad (z\in \mathbb{D}), \] fulfill also the following inequality: $$|γ_n(f)|\le λ/(2n(n+1)).$$ Here $λ$ is a real number such that $0<λ\le 1$. In the paper we confirm that the conjecture is true, and sharp.