论文标题

费米子链和双光谱的纠缠

Entanglement in Fermionic Chains and Bispectrality

论文作者

Crampé, Nicolas, Nepomechie, Rafael I., Vinet, Luc

论文摘要

研究了有限和半无限的免费费米子链中的纠缠。通过分析信号处理中的时间和频带限制,平行于平行。结果表明,在存在基本的双光谱问题的情况下,可以使用代数HEUN操作员结构在使用代数HEUN操作员结构的情况下找到与纠缠哈密顿式通勤的三角形矩阵。对应于Lie代数$ \ Mathfrak {Su}(2)$和$ \ Mathfrak {su}(1,1)$的情况,以及Q-demformed algebra $ \ mathfrak {so} _q(so} _q(3)$ at unity的$ q $。

Entanglement in finite and semi-infinite free Fermionic chains is studied. A parallel is drawn with the analysis of time and band limiting in signal processing. It is shown that a tridiagonal matrix commuting with the entanglement Hamiltonian can be found using the algebraic Heun operator construct in instances when there is an underlying bispectral problem. Cases corresponding to the Lie algebras $\mathfrak{su}(2)$ and $\mathfrak{su}(1,1)$ as well as to the q-deformed algebra $\mathfrak{so}_q(3)$ at $q$ a root of unity are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源