论文标题
Riemann Sphere的固定Gromov-witten不变的矩阵模型
Matrix models for stationary Gromov-Witten invariants of the Riemann sphere
论文作者
论文摘要
受Dubrovin,Yang和Zagier的最新公式的启发,我们解释了$ \ Mathbb {p}^1 $的均值固定的Gromov-witten不变性,为与差异方程相关的异构粒子tau函数。作为副产品,我们获得了此tau函数的kontsevich矩阵模型的类似物。还考虑了与Charlier合奏的联系。
Inspired by recent formulæ of Dubrovin, Yang, and Zagier, we interpret the tau function enumerating stationary Gromov-Witten invariants of $\mathbb{P}^1$ as an isomonodromic tau function associated with a difference equation. As a byproduct we obtain an analogue of the Kontsevich matrix model for this tau function. A connection with the Charlier ensemble is also considered.